
1

Fairouz Makhlouf

Statistical Support Staff

Center for Information Technology

National Institutes of Health

2

• Introduction 3

• Data Objects 34

• Statistical Models 109

• Graphics 133

• Data Input and Output 174

• Functions 228

3

4

• Starting and Quitting S-PLUS
• Getting Help
• Expressions and Objects in S-Plus
• Storing and removing objects
• Finding Objects
• Legal Names IN S-Plus
• Basic Syntax and Conventions
• Recalling Past Commands
• Editing Commands
• Multiple commands on a single Line
• Command Line Editing
• Arithmetic Operators
• Exercises

5

• To Start S-Plus for Windows:
– Go to Start button

– Go to programs

– Choose S-Plus 2000

6

• Wait for a copy-right message, followed by the S-
Plus prompt.

7

• There are several ways to quit S-PLUS
– q()

– Choose Exit from the File menu

– Click on the Close box button.

8

• Go to the Help Menu
on the Screen and
select what you need.

9

• At the S-Plus prompt type help(). It will starts the
windows help application.

10

• Also help(something) display the closest topic it can
find.

11

• Also ?something display the closest topic it can find.

12

Expressions and Objects in S-PLUS

• Since S-PLUS is an interactive software program, at the
prompt you can use S-Plus by typing expressions.

13

• The default S-PLUS prompt is “>”

• The default continuation in S-PLUS is “+”

• To change the default you can do the
following:
– Go to Options

– Choose Command Line

– Click on the Options Tab

– Change Main Prompt to “*” and the Continue
Prompt to “&”

14

Go to Options and Choose Command Line Click on the Options Tab

Change Main Prompt to “*” and the

Continue Prompt to “&” Result:

15

• To store an object in S-Plus we have to give
it a name.

• To assign names we use the assignment
operator “<-” or underscore “_”.

• Assignments in S-Plus remains until
removed or overwritten.

• To remove a variable you can use the rm
function.

16

17

• If an existing object was changed, you have the
option of making these changes permanent before
you exit, or keeping the original value.

18

• To see the names of the objects you have created
in S-Plus you can use the function objects

19

• S-Plus comes in with built-in functions and data sets like
LETTERS and letters the upper and the lower case letters
of the alphabet.

20

• When you type an object name or function S-Plus looks
through a sequence of directories called the search list. To
see the current search list you can use the function
search()

21

• To list the names of the objects stored in the directories on
the search list, use the object function with the directory
number as an argument.

22

• To find a directory or directories that hold objects with a
particular name we can use the find function.

• Also if you use the argument numeric=T the find function
will give you the directory number.

23

• It can be any combination of letters, numbers and
periods. But it can’t Start with a number and no
other symbols are allowed.

• There is no limit to the number of characters in an
object name

• S-PLUS is case sensitive so Age is different than
age and the two are different from AGE.

• You can’t use the underscore “_” in the S-PLUS
names.

24

• Examples:
– mydata
– data.one
– RandomNumbers
– data.1.cit.gov

• DO NOT choose names that coincide with
the built-in S-Plus functions like C,D, c, q,
s, t (those are S-Plus functions that have a
single -character name which users usually
use them to name their own functions or
data).

25

• S-Plus ignores most spaces.
– For example you can put an arbitrary amount of white spaces

between an operator and a number.

• S-Plus does not allow a space in the middle of an object
name or a number. It will interprets the resulting pieces as
two names or two numbers. And S-Plus will give a Syntax
error.

• You can not have a space in the two character assignment
operator “<-” since “<” is the less than S-Plus operator and
“-” is the S-Plus minus sign operator.

• Spaces within character string are recorded as you type
them. So in the following example char1 and char2 are
different.

26

27

Note the error message.

28

F8Search for selected text

PageDownGo forward 10 lines

PageUpRecall the 10th line back

Down ArrowGo to the next line

Up ArrowRecall the previous line

KeystrokeAction

29

EscClear Command line and
Search buffer

EndEnd of line

HomeBeginning of line

BackspaceErase left of cursor

DeleteErase right of cursor

Right ArrowMove one character to the right

Left ArrowMove one character to the left

KeystrokeAction

30

Multiple Commands On a Single Line

• Several commands can be typed on a single line
by separating them by a semicolon “;”

31

• (+) is used for addition

• (-) is used for subtraction

• (*) is used for multiplication

• (/) is used for division

• (^) or (**) is used to raise values to a certain
power

32

33

Exercises: Introduction

Q1. Identify the directories in your current
search list?

Q2. Find the directory that contains the function
“glm”?

Q3. Get help on the function objects and use the
pattern argument to identify all the objects in
the above directory which contains “glm”

34

35

• Types of data objects

• Modes, Attributes, and Classes

36

• There are seven basic types of data objects in S-Plus that
can be classified into two categories

• Atomic objects that can contain values of only one
kind.They are
– Vector data objects
– Matrix data objects
– Array data objects
– Factor data objects
– Time Series data objects

• Non-Atomic objects that contain values of all kinds. They
are
– List data objects
– Data Frame Objects

37

• Mode: The nature of the elements of the
object, e.g. numeric, character

• Attributes: Characteristics and descriptive
information about the object like the length
of a vector, dimensions of a matrix etc.

• Class: The overall structure of the object,
e.g. is it a matrix, a list or a linear model fit.

38

• The modes of values most commonly used in data
analysis are as follows:
– Logical, numeric, complex, character, NA and NULL

• The mode function returns the mode of the object

39

• Logical values, TRUE (= T) and FALSE (= F),
represent two-valued or binary data.

• Examples of types of data represented by logical
values are
– “yes” or “no”
– “presence” or “absence”
– “True” or “False”

40

• They represent real numbers.

• They can be expressed in any of the following
forms
– Ordinary decimal numbers, such as 20, -4.5 or 15.678

– As S-plus expression, such as pi, exp(1), or 1/3

– Scientific Notation, which represents numbers as power
of 10, such as 1e2 (=100) or 2e-2 (=0.02)

• Inf (infinity or ∞). This value can be either
assigned to objects or it can be returned from the
computation, such as 5/0

41

• They are specified in the form a+bi where a
is the real part and b is the imaginary part.

• Examples:
– 1+0i

– 3-2i

– 5.7+2.3i

• If we want to define a complex number with
an imaginary part that is not expressed in
decimal form we need to use the complex
function as follows:

42

43

• Any character string enclosed in quotes (“
”) or apostrophes (‘’) is a character value.

• You can have embedded spaces.

44

• It stands for “Not Available” and is the
missing value code for logical, numerical,
and complex data in S-Plus

• It can be entered directly as a value e.g.
c(2,6,NA,7.5) or it can represent 0/0 that
may results from intermediate computation.

• There is no missing value code for character
value but we may represent it by “”.

45

• It represents a non-value.

• An example of this is the result from asking
for the names associated with the values of
a vector when there aren’t any.

46

• It provides information on the object
structure and contents

• It depends on the nature of the object

• The function attributes displays the
attributes of an object

47

48

• It describes the overall structure of the object

• The function class displays the class of
sophisticated types of object that has an explicit
type attribute.

• The function data.class will display the class of
an object based on its attribute. This function is
used with the objects that does not have an explicit
class attribute like vectors, matrices, time series
and factors.

49

50

51

• It is a set of numbers, character values, logical
values, etc..

• Vectors must be of a single mode.
• Vectors have three attributes: length, mode and

name
– Length: gives the number of values in the vector and

can be displayed by the length function
– Mode: gives the kind of values and can be displayed

with the mode function.
– Names: gives the value labels and can be displayed by

the names function.

52

• The following table summarizes the most useful functions
for creating vectors

F u n c t i o n D e s c r i p t i o n

s c a n r e a d v a l u e s a n y m o d e

c C o m b i n e v a l u e s a n y m o d e

r e p R e p e a t v a l u e s a n y m o d e

s e q N u m e r i c

v e c t o r I n i t i a l i z e v e c t o r s

l o g i c a l I n i t i a l i z e l o g i c a l v e c t o r s

n u m e r i c I n i t i a l i z e n u m e r i c v e c t o r s

c o m p l e x I n i t i a l i z e c o m p l e x v e c t o r s

c h a r a c t e r I n i t i a l i z e “ c h a r a c t e r ” v e c t o r s

53

Examples: Scan Function

> x <- scan()
1: 2 4 6 8 10
6:
> x
[1] 2 4 6 8 10
> x <- scan(what=character())
1: a b c
4:
> x
[1] "a" "b" "c"

54

Examples: c Function

> x <- c(1,3,5)
> x
[1] 1 3 5
> x <- c(T,F,T,T)
> x
[1] T F T T
> x <- c("a","b","c")
> x
[1] "a" "b" "c"

55

Examples: rep Function

> x <- rep(NA,3)
> x
[1] NA NA NA
> x <- rep(2,6)
> x
[1] 2 2 2 2 2 2
> x <- rep(c(1,2,3),2)
> x
[1] 1 2 3 1 2 3
> x <- rep(c("y","n"),c(2,4))
> x
[1] "y" "y" "n" "n" "n" "n"

56

Examples: seq Function

> x <- seq(-1,1,0.4)
> x
[1] -1.0 -0.6 -0.2 0.2 0.6 1.0
> x <- seq(-2,2,length=5)
> x
[1] -2 -1 0 1 2
> x <- seq(0,by=0.1,length=4)
> x
[1] 0.0 0.1 0.2 0.3

57

> x <- seq(1,by=0.02,along=1:6)
> x
[1] 1.00 1.02 1.04 1.06 1.08 1.10
> x <- 1:3
> x
[1] 1 2 3
> x <- 3:-4
> x
[1] 3 2 1 0 -1 -2 -3 -4
> x <- 3.2:5
> x
[1] 3.2 4.2

58

Examples: vector Function

> x <- vector("numeric",5)
> x
[1] 0 0 0 0 0
> x <- vector("character",5)
> x
[1] "" "" "" "" ""
> x <- vector("complex",3)
> x
[1] 0+0i 0+0i 0+0i
> x <- vector("logical",3)
> x
[1] F F F

59

Examples: logical, numeric, complex and
character Functions

> x <- numeric(3)
> x
[1] 0 0 0
> x <- character(3)
> x
[1] "" "" ""
> x <- logical(3)
> x
[1] F F F
> x <- complex(3)

60

Examples: vector attributes

> x <- 1:8
> x
[1] 1 2 3 4 5 6 7 8
> mode(x)
[1] "numeric"
> length(x)
[1] 8
> names(x) <- letters[1:8]
> x
a b c d e f g h
1 2 3 4 5 6 7 8

61

• To subscribe a vector we do
– Vec[subscript]

• Ways of subscribing a vector
– Blank: All of the elements of the vector are selected
– Positive Integers: Select the elements in the vector

specified by the subscript
– Negative Integers: Select the elements in the vector

that are not specified by the subscript
– Logical Values: Select all elements of the vector

corresponding to TRUE values in the subscript
– Character Strings: Select the elements of the vector

specified by the subscript, based on the names attribute
of the vector.

62

Example: Subscript

> x[] # Blank
a b c d e f g h
1 2 3 4 5 6 7 8
> x[c(8,3,2)] # Positive Integers
h c b
8 3 2
> x[3:5] # Positive Integers
c d e
3 4 5
> x[-c(1,7)] # Negative Integers
b c d e f h
2 3 4 5 6 8

63

> x[c(T,T,F,T,F,T,F,F)] # Logical Values
a b d f
1 2 4 6
> x[x>5] # Logical Values
f g h
6 7 8
> x[c("b","c")]
b c
2 3

64

• It is a two-way array. They are used to arrange
values by rows and columns in a rectangular table.

• Matrices have four attributes:length, mode,dim
and dimnames
– Length: gives the number of values in the matrix and

can be displayed by the length function
– Mode: gives the kind of values and can be displayed

with the mode function.
– Dim: gives the number of rows and columns and can

be displayed with the dim function.
– Dimnames: gives the row and column name and can be

displayed by the dimnames function.

65

• Using the “matrix” function

• Using “dim” function

• Using “rbind” and the “cbind” function

66

Creating Matrices: using “matrix” function

• matrix(data , nrow=n ,ncol=m, byrow=F,
dimnames=NULL)

• As default the values are placed in the
matrix column by column. That is all rows
of the first column are filled, then the rows
of the second column are filled an so on.

• To fill the matrix row by row, set byrow to
equal T.

67

Example: matrix Function

> mat <- matrix(1:12,nrow=2)
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> mat <- matrix(1:12,nrow=2,byrow=T)
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 4 5 6
[2,] 7 8 9 10 11 12

68

Creating Matrices: using rbind & cbind functions

• Combine vectors of matrices into a single matrix
using
– rbind function: combine vectors raw by raw

– cbind function: combine vectors column by column

• Note: when vectors of different lengths are
combined using cbind or rbind, the shorter ones
gets replicated so the matrix is “filled in”.

69

Example: cbind Function

> x <- c(2,3,4,5)
> y <- c(8,10,5,4)
> mat <- rbind(x,y)
> mat

[,1] [,2] [,3] [,4]
x 2 3 4 5
y 8 10 5 4

70

Example: rbind Function

> x <- c(2,3,4,5)
> y <- c(8,10,5,4)
> mat <- cbind(x,y)
> mat

x y
[1,] 2 8
[2,] 3 10
[3,] 4 5
[4,] 5 4

71

Creating Matrices: with “dim” function

• Create a matrix from an existing vector we
can use the dim function to set the “dim“
attribute.

72

Example: dim Function

> mat <- c("a","b","c","d","e","f")
> dim(mat) <- c(2,3)
> mat

[,1] [,2] [,3]
[1,] "a" "c" "e"
[2,] "b" "d" "f"

73

Example: matrix attributes

> mat <- matrix(seq(-2,2,length=6),nrow=2)
> mat

[,1] [,2] [,3]
[1,] -2.0 -0.4 1.2
[2,] -1.2 0.4 2.0
> dim(mat)
[1] 2 3
> mode(mat)
[1] "numeric"

74

> length(mat)
[1] 6
> row.names <- paste("row",letters[1:2])
> col.names <- paste("col",letters[1:3])
> dimnames(mat) <- list(row.names,col.names)
> mat

col a col b col c
row a -2.0 -0.4 1.2
row b -1.2 0.4 2.0

75

• Each dimension of a matrix may be
subscripted in the same way as vectors. If
no subscripts are given then all of the values
are returned.

76

Example: Matrix Subscripting

> mat[] #Blank
col a col b col c

row a -2.0 -0.4 1.2
row b -1.2 0.4 2.0
> mat[2,2] # getting an element
[1] 0.4
> mat[1,] # getting a row
col a col b col c

-2 -0.4 1.2

77

> mat[,1] # getting a column
row a row b

-2 -1.2
> mat[c(F,T),] #logical subscript
col a col b col c
-1.2 0.4 2

> mat["row a","col b"] #by dimention name
[1] -0.4

78

• They provide a way to represent categorical
vectors.

• When using Ordered Factors we are assuming
some sort of natural ordering (e.g. Low, High)

• Most of the advanced statistical modeling
functions such as lm, aov, glm, gam, loess and nls
recognize that Factors represent categorical
variables and treat them appropriately

79

• Ordered Factors include information about the
ordering of the categories. So, they are treated
differently than factors by the modeling functions.

• A Factor is stored as a vector of integers
corresponding to the possible categories. The
names of the categories are stored as levels
attribute of the factor.

• Factors and Ordered factors have the following
main attributes: levels, class
– Levels: gives the levels of values and can be displayed

with the level function.
– class: specifies whether it is a Factor or an Ordered

Factor and can be displayed with the class function.

80

• Use the factor function to create a factor
– levels argument can be used to specify the

levels

– labels argument can be used to specify labels
for the levels

81

Example: Creating Factors

> color <- factor(c("Red","Green","Yellow","Red"))
> color
[1] Red Green Yellow Red

> color <- factor(c("Red","Green","Yellow","Red"),
+ levels=c("Red","Green","Yellow"),
+ labels=c("Red Color",
+ "Green Color","Yellow Color"))
> color
[1] Red Color Green Color Yellow Color
[4] Red Color

82

Example: Factors Attributes

> levels(color)
[1] "Green" "Red" "Yellow"
> class(color)
[1] "factor"

83

• Use the ordered function to create an
ordered factors
– levels argument can be used to specify the

levels

– The order of the categories in the levels
attribute specifies the ordering of the levels

– labels argument can be used to specify labels
for the levels

84

Example: Creating Ordered Factors

> education <- ordered(c("Hi","Hi","Med","Lo",
+ "Lo","Med"),
+ levels=c("Lo","Med","Hi"))
> education
[1] Hi Hi Med Lo Lo Med

Lo < Med < Hi

85

Example: Ordered Factors Attributes

> levels(education)
[1] "Lo" "Med" "Hi"
> class(education)
[1] "ordered" "factor"

86

87

• They are data objects that allows you to group
data by variables (columns) regardless of their
type. Note that all of the variables must be of the
same length.

• The attributes of a data frame are length, mode,
names, rownames and class.
– Length gives the number of components
– Mode is “list’.
– Names gives the variable label.
– row.names gives the row or observation labels.
– Class shows that the object we have is a “dataframe’.

88

• Use data.frame function to combine
vectors into data frame

• Use as.data.frame function to convert a
matrix to data frame

89

Example: date.frame function

> name <- c("Tom","Susan","Fay","Sam")
> grade <- c(90,70,80,65)
> class.frame <- data.frame(name,grade)
> class.frame

name grade
1 Tom 90
2 Susan 70
3 Fay 80
4 Sam 65

90

Example: as.date.frame function

> mat.to.frame <- as.data.frame(mat)
> mat.to.frame

col a col b col c
row a -2.0 -0.4 1.2
row b -1.2 0.4 2.0

91

Example: attributes of Data Frame

> mode(class.frame)
[1] "list"
> names(class.frame)
[1] "name" "grade"
> row.names(class.frame)
[1] "1" "2" "3" "4"
> class(data.frame)
NULL
> class(class.frame)
[1] "data.frame"

92

• Data Frame could be subscribed as a
– matrix

– list

93

Example: Data Frame Subscripting
> class.frame[1,]
name grade

1 Tom 90
> class.frame[1:2,]

name grade
1 Tom 90
2 Susan 70
> class.frame[,c(T,F)]
[1] Tom Susan Fay Sam
> class.frame$grade
[1] 90 70 80 65

94

• It is an ordered collection of components.

• Each components can be any data object.

• Different list component can be of different
modes.

• List Attributes are length, mode and names
– Length gives the number of components

– Mode is “list’.

– Names gives the name for each component

95

• Use the list function to combine objects into
a List

96

Example: Creating List

> list1 <- list(x=x,mat=mat)
> list1
$x:
[1] 2 3 4 5

$mat:
col a col b col c

row a -2.0 -0.4 1.2
row b -1.2 0.4 2.0

97

Example: List Attributes

> length(list1)
[1] 2
> mode(list1)
[1] "list"
> names(list1)
[1] "x" "mat"

98

• Use the $ operator with the name of the
component.

• Put the number of the component in double
square brackets [[]].

• Put the name of the component surrounded
in quotes in double square brackets [[]].

99

Example: List Subscript

> list1$mat
col a col b col c

row a -2.0 -0.4 1.2
row b -1.2 0.4 2.0
> list1[[1]]
[1] 2 3 4 5
> list1[["x"]]
[1] 2 3 4 5

100

Exercises:Data Objects
Q1. What is the difference between the following two lines?

> Letters <- c(T,F)
> Letters <- c(“T”,”F”)

Q2. Do the following
> num1 <- “2”
> num2 <- “3”
> num1+num2
What do you get?

Q3. Change the mode of num1 and num2 to numeric? Then
do

>num1+num2
What do you get now?

101

Q4. a. Find the values of the following:
> rep(5,1)
> rep(1,5)
> rep(c(0,6),2)
> rep(c(“a”,”b”),3)
> rep(1:3,4)
> rep(c(1,5,8),length=10)
> rep(1:5,1:5)

b. Assign rep(1:5,1:5) to the name x? Find the length
of x using the length function.

c. Force the length of x to be 5 by doing
> length(x) <- 5
What happened?

102

Q5. Find the values of the following:

> seq(1,5,1)

> seq(1,5)

> seq(5)

> seq(5,1,-1)

> seq(5:1)

> 5:1

> seq(3,4,0.1)

103

Q6. Let
> x <- seq(1,15,1)
> y <- x > 5
> z <- x[x>5]
What are the values of y and z?

Q7. Let
> grade <- c(5,7,8)
> name <- c("Sam","Dan","Susan")
a. Do,

> c(grade,name)
What do you notice?

b. Do,
> c(grade,T,T,F,T)
What do you notice?

104

Q8. Make a matrix that looks like this
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
And like this one

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Q9. a. Using the rbind function create a matrix from the
following vectors

> grade1 <- c(5,7,8)
> grade2 <- c(6,6,10)

105

b. What is the mode for this matrix?

c. What is the dim of this matrix?

d. What is the dimnames of this matrix?

e. Use the following vector for column names

name <- c("Sam","Dan","Susan")

f. Write out the first column of the matrix.

g. Write out the rows for Sam and Susan.

h. Use the function t to find the transpose of this matrix.

Q10. a. Create a data frame that looks like the following:

106

> authors

FirstName LastName Age Income Home

1 Lorne Green 82 1200000 California

2 Loren Jaye 40 40000 Washington

3 Robin Green 45 25000 Washington

4 Robin Howe 2 0 Alberta

5 Billy Jaye 40 27500 Washington

b. What is the out come of the following two lines:

> authors$Age[1:3]

> authors[1:3]$Age

107

Q11. For the built in object air
a. Show that it is a data frame
b. Find the name of the variables
c. Find the row names

Q12. a. Create the following two lists
> list1 <- list(a=1:3,b=rep(4,5),l=letters[1:5])
> list2 <- list(list1=list1,old=list(1:5,7:4),c(2,3))

c. Print the names of the two lists using the
names function.

d. Find the values of these
list1$b list2$list1$l list2[[3]]
list2[[3]]+4 list2[3]+4

108

Q13. We can use the cut function to create factor
objects.

a. Type the following and look at the result.

> age <- c(27,80,5,35,45,10,77,68)

> age.factor <- factor(cut(age,

+ breaks=c(0,30,60,90)),

+ levels=c(1,2,3),

+ label=c("Young","Middle Age","Old"))

b. Find the attributes of age.factor

109

110

• Linear Regression

111

Tree-based modelstree

Non-linear modelsnls, ms

Local regression analysisloess

Linear modelslm

Generalized linear modelglm

Generalized additive modelgam

ANOVAaov

ExplanationFunction

Regression Methods in Splus

112All terms in F crossed to order mF^m

Fa + Fa %in% FbFa/ Fb

Fb is nested within FaFa %in% Fb

Fa + Fb + Fa: FbFa* Fb

The interaction between Faand FbFa: Fb

Include all of Fa except what is in Fb

in the model
Fa – Fb

Include both Fa and Fb in the modelFa + Fb

T is predicted linearly in FT ~ F

MeaningExpression

113

• Consider the built-in data sets stack.loss and
stack.x. Together, the two datasets contains
information on ammonia loss in a manufacturing
process.

• stack.x: is a is a matrix that contains the three
columns air flow, water temperature and acid
concentration which are going to be considered
the predictors.

• stack.loss: is a is a vector containing the percent of
ammonia lost times 10 and is going to be
considered the response.

114

• Organizing the data

• Exploratory data analysis

• Fitting the model

• Producing summaries and diagnostic plots

• Fitting an alternative models

• Comparing the fitted models for goodness of fit

• Prediction

• Using the selected model.

115

Organizing the Data

• Combine the two datasets into a data frame
> stack.df <- data.frame(stack.loss,stack.x)

> names(stack.df)

[1] "stack.loss" "Air.Flow" "Water.Temp"
"Acid.Conc.“

• Attach the data frame stack.df

> attach(stack.df)

116

Exploring the Data

• To get a summary statistics of the data use the
summary function.

> summary(stack.df)

stack.loss Air.Flow Water.Temp Acid.Conc.

Min.: 7.00 Min.:50.00 Min.:17.0 Min.:72.00

1st Qu.:11.00 1st Qu.:56.00 1st Qu.:18.0 1st Qu.:82.00

Median:15.00 Median:58.00 Median:20.0 Median:87.00

Mean:17.52 Mean:60.43 Mean:21.1 Mean:86.29

3rd Qu.:19.00 3rd Qu.:62.00 3rd Qu.:24.0 3rd Qu.:89.00

Max.:42.00 Max.:80.00 Max.:27.0 Max.:93.00

117

• To get the correlation matrix use the cor function.
> cor(stack.df)

stack.loss Air.Flow Water.Temp Acid.Conc.

stack.loss 1.0000000 0.9196635 0.8755044 0.3998296

Air.Flow 0.9196635 1.0000000 0.7818523 0.5001429

Water.Temp 0.8755044 0.7818523 1.0000000 0.3909395

Acid.Conc. 0.3998296 0.5001429 0.3909395 1.0000000

So as we can see the Air.flow and Water.Temp are
both highly correlated and both are highly
correlated with stack.loss.

118

• To produce a scatterplot matrix use the pairs
function.

> pairs(stack.df)

stack.loss

50 55 60 65 70 75 80 75 80 85 90

10
20

30
40

50
60

70
80

Air.Flow

Water.Temp

18
20

22
24

26

10 20 30 40

75
80

85
90

18 20 22 24 26

Acid.Conc.

We can see that there is
a strong linear
relationship between
stack.loss and both
Air.flow and
Water.Temp.

Also, the two predictor
variables are
themselves correlated.

119

Fitting a model

• To fit a multiple regression model predicting
stack.loss by all three covariates. We do the
following

> fit1 <- lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.)

120

• To get the estimates do the following:
> fit1

Call:

lm(formula = stack.loss ~ Air.Flow + Water.Temp +
Acid.Conc.)

Coefficients:

(Intercept) Air.Flow Water.Temp Acid.Conc.

-39.91967 0.7156402 1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual

Residual standard error: 3.243364

121

• To get more detailed description of the model
use the summary function:

> summary(fit1)

Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.)

Residuals:

Min 1Q Median 3Q Max

-7.238 -1.712 -0.4551 2.361 5.698

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -39.9197 11.8960 -3.3557 0.0038
Air.Flow 0.7156 0.1349 5.3066 0.0001
Water.Temp 1.2953 0.3680 3.5196 0.0026
Acid.Conc. -0.1521 0.1563 -0.9733 0.3440

122

Residual standard error: 3.243 on 17 degrees of freedom

Multiple R-Squared: 0.9136
F-statistic: 59.9 on 3 and 17 degrees of freedom, the p-value is 3.016e-009

Correlation of Coefficients:

(Intercept) Air.Flow Water.Temp

Air.Flow 0.1793

Water.Temp -0.1489 -0.7356

Acid.Conc. -0.9016 -0.3389 0.0002

As we can see Air.Flow and Water.Temp are important
predictors of stack.loss.

123

Producing Diagnostic Plots

• To produce a set of diagnostic plots we can
use the function plot.lm.

> par(mfrow=c(3,2))

> plot.lm(fit1)
Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 20 30 40
-6

-2
2

4
6

3
4

21

fits

sq
rt

(a
bs

(R
es

id
ua

ls
))

10 20 30 40

0.
5

1.
5

2.
5

3
4
21

Fitted : Air.Flow + Water.Temp + Acid.Conc.

st
ac

k.
lo

ss

10 20 30 40

10
20

30
40

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-6
-2

2
4

6

3
4

21

Fitted Values

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
10

20

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
10

20

f-value

st
ac

k.
lo

ss

Index

C
oo

k’
s

D
is

ta
nc

e

5 10 15 20
0.

0
0.

2
0.

4
0.

6

41

21

124

Fitting Alternative Models

• Since the t-value for Acid.Conc. is small, it
suggests that this variable does not add to the
model so it could be deleted.

> fit2 <- update(fit1,. ~ . - Acid.Conc.)

> fit2

Call:

lm(formula = stack.loss ~ Air.Flow + Water.Temp)

Coefficients:

(Intercept) Air.Flow Water.Temp

-50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual

Residual standard error: 3.238615

125

> summary(fit2)

Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp)

Residuals:

Min 1Q Median 3Q Max

-7.529 -1.75 0.1894 2.116 5.659

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -50.3588 5.1383 -9.8006 0.0000

Air.Flow 0.6712 0.1267 5.2976 0.0000

Water.Temp 1.2954 0.3675 3.5249 0.0024

Residual standard error: 3.239 on 18 degrees of freedom

Multiple R-Squared: 0.9088

F-statistic: 89.64 on 2 and 18 degrees of freedom, the p-value is 4.382e-010

Correlation of Coefficients:

(Intercept) Air.Flow

Air.Flow -0.3104

Water.Temp -0.3438 -0.7819

126

Comparing Models

• To compare the two models we use the
function anova as follows:

>anova(fit1,fit2)

Analysis of Variance Table

Response: stack.loss

Terms Resid. Df RSS Test Df Sum of Sq

1 Air.Flow + Water.Temp + Acid.Conc. 17 178.8300

2 Air.Flow + Water.Temp 18 188.7953 -Acid.Conc. -1 -9.965372

F Value Pr(F)

1

2 0.9473319 0.3440461

127

The multiple R2 has decreased only from 0.9136 to 0.9088.
Also the F-value = 0.9473319 and Pr(F) = 0.3440461. Which
suggest that the larger model does not predict stack.loss
significantly better than the smaller model. So, the smaller
model is preferred.

The diagnostic plots for fit2 also suggest that the model is
appropriate.

> par(mfrow=c(2,3))

> plot(fit2)
Fitted : Air.Flow + Water.Temp

R
es

id
ua

ls

10 15 20 25 30 35

-8
-6

-4
-2

0
2

4
6

3
4

21

fits

sq
rt

(a
bs

(R
es

id
ua

ls
))

10 15 20 25 30 35

0.
5

1.
0

1.
5

2.
0

2.
5

3

4

21

Fitted : Air.Flow + Water.Temp

st
ac

k.
lo

ss

10 15 20 25 30 35

10
20

30
40

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-8
-6

-4
-2

0
2

4
6

3
4

21

Fitted Values

0.0 0.4 0.8

-1
0

-5
0

5
10

15
20

Residuals

0.0 0.4 0.8

-1
0

-5
0

5
10

15
20

f-value

st
ac

k.
lo

ss

Index

C
oo

k’
s

D
is

ta
nc

e

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

3
1

21

128

Prediction
To get predicted values of new predictor values, we could
use the predict function.

> new.values <- data.frame(Air.Flow=c(55,80),

+ Water.Temp=c(16,26))

> predict(fit2,new.values)

1 2

7.280276 37.01265

129

Using the model
In S_PLUS we can subscript an object of linear model fit like fit2
or the result of summary(fit2) to obtain components of the fit as
S-PLUS objects.
> names(fit2)

[1] "coefficients" "residuals" "fitted.values" "effects" "R"

[6] "rank" "assign" "df.residual" "contrasts" "terms"

[11] "call"

> fit2$coef

(Intercept) Air.Flow Water.Temp

-50.35884 0.6711544 1.295351

> names(summary(fit2))

[1] "call" "terms" "residuals" "coefficients" "sigma"

[6] "df" "r.squared" "fstatistic" "cov.unscaled" "correlation"

> summary(fit2)$df

[1] 3 18 3

130

Or, you could use the extractor functions coef, resid and fitted
which returns the coefficient, residuals and fitted values
respectively.

> coef(fit2)
(Intercept) Air.Flow Water.Temp

-50.35884 0.6711544 1.295351

> resid(fit2)
1 2 3 4 5 6 7 8

3.691998 -1.308002 4.638473 5.658832 -1.750465 -3.045817 -3.341168 -2.341168

9 10 11 12 13 14 15 16

-3.361199 2.115558 2.115558 2.410909 -0.8844421 -1.179793 1.484793 0.4847934

17 18 19 20 21

0.189442 0.189442 -0.1059093 1.867164 -7.528998

> fitted(fit2)
1 2 3 4 5 6 7 8 9

38.308 38.308 32.36153 22.34117 19.75047 21.04582 22.34117 22.34117 18.3612

10 11 12 13 14 15 16 17 18

11.88444 11.88444 10.58909 11.88444 13.17979 6.515207 6.515207 7.810558 7.810558

19 20 21

9.105909 13.13284 22.529

131

Exercises:Statistical Models
Q1.a. Create a data frame called swiss.df from the

matrix swiss.x and the vector swiss.fertility.
b. Get a summary of swiss.df.
c. Get the correlation coefficient between all of the

variables.
d. Produce a scatter plot matrix for all of the

variables.
e. Fit a model with both Education and Catholic as

predictors and swiss.fertility as the response.
f. Fit a model with Education as a predictor and

swiss.fertility as the response.

132

g. Fit a model with Catholic as a predictor and
swiss.fertility as the response.

h. Determine whether Education alone, Catholic
alone or both should be included in the model.

133

134

• Introduction

• Graphic devices and Graphic devices
drivers

• Graphics Functions

• Multiple plot Layout

• Graphic parameters

• Adding elements to an existing plot

135

• It is one of the most widely used mediums
of transferring information about data.

• It allows researchers to visualize data in
order to detect interesting features or
structure in the data.

136

• Two kinds of graphic devices
– Graphic Windows
– Printing Devices

• To start a graphsheet without plotting type
– >graphsheet()

• To start a printer device without plotting
– >graphsheet(format=“printer”)

• To close the graphics device type
– >dev.off() (note that a printer device must be closed to

send the graph to the printer or the specified file)

137

• You can have several active graphic devices.

• Only one graphic devices is the current graphic
device.

• dev.list() tells what graphic devices are active

• dev.cur() tells which graphic device is the current
one.

• You can change the current device by using
dev.set(x) where x is the graphic device that you
want to be the current.

• To turn off a graphic device use dev.off().

138

Graphic Functions: Univariate Data

Quantile-Quantile plot for a sample
against the standard normal

qqnorm

Pie chartpie

Dot chartdotchart

Histogramhist

Simple box plotboxplot

Simple bar plotbarplot

ExplanationFunction

139

> x <- c(10,23,12)
> names(x) <- c("Small","Median","Large")
> x
Small Median Large

10 23 12
> barplot(x, names=names(x))

Small Median Large

0
5

10
15

20

140

> boxplot(air$ozone)

1
2

3
4

5

141

> hist(air$ozone)

1 2 3 4 5 6

0
5

10
15

20
25

air$ozone

142

>pie(x,names=names(x))

Small

Median

Large

143

> qqnorm(air$ozone)

Quantiles of Standard Normal

ai
r$

oz
on

e

-2 -1 0 1 2

1
2

3
4

5

144

Graphic Functions: Bivariate Data

Quantile-quantile plot for two samplesqqplot

Side-by-side box plotsboxplot

Simple bar plotbarplot

Scatterplotplot

ExplanationFunction

145

• > plot(air$ozone,air$radiation)

air$ozone

ai
r$

ra
di

at
io

n

1 2 3 4 5

0
50

10
0

15
0

20
0

25
0

30
0

146

> boxplot(split(fuel.frame$Mileage,fuel.frame$Type))
20

25
30

35

Compact Large Medium Small Sporty Van

147

> boxplot(split(fuel.frame$Mileage,fuel.frame$Type),notch=T)
15

20
25

30
35

Compact Large Medium Small Sporty Van

148

> qqplot(fuel.frame$Mileage,fuel.frame$Weight)

fuel.frame$Mileage

fu
el

.fr
am

e$
W

ei
gh

t

20 25 30 35

20
00

25
00

30
00

35
00

149

Graphic Functions: Three-Dimensional Plots

Color or grayscale image plotimage

Perspective plotpersp

Contour plotcontour

ExplanationFunction

150

Graphic Functions: Multivariate Data

Scatterplot with symbols determined by
third variable

symbols

Scatterplots conditioned on a third
variable

coplot

Pairwise scatter plot matrixpairs

ExplanationFunction

151

> pairs(air)

ozone

0 50 100 200 300 5 10 15 20

1
2

3
4

5

0
50

15
0

25
0

radiation

temperature

60
70

80
90

1 2 3 4 5

5
10

15
20

60 70 80 90

wind

152

Graphic Functions: Dynamic Graphics

Create linked scatterplots and
rotatable point cloud

brush

ExplanationFunction

153

> brush(air)

154

• To display more than one plot on a single
page, use the “par” function

• Syntax
– par(mfrow=c(n,m))

Where n = number of rows

m = number of columns

155

> par(mfrow=c(2,2))

> boxplot(air$ozone)

> qqnorm(air$ozone)

> boxplot(air$radiation)

> qqnorm(air$radiation)
1

2
3

4
5

Quantiles of Standard Normal

ai
r$

oz
on

e

-2 -1 0 1 2

1
2

3
4

5

0
50

10
0

20
0

30
0

Quantiles of Standard Normal

ai
r$

ra
di

at
io

n

-2 -1 0 1 2

0
50

10
0

20
0

30
0

156

• The default shape of the box enclosing the plot is
rectangular.

• To change it to a square box at the S-Plus prompt
we write
> par(pty=“s”)
where pty stands for “plot type”

• To change it back to the default at the S-Plus
prompt we write
> par(pty=“”)

157

> par(pty="s")

> hist(ozone)

> par(pty=“”)

> hist(ozone)

1 2 3 4 5 6

0
5

10
15

20
25

ozone

1 2 3 4 5 6

0
5

10
15

20
25

ozone

158

Plotting characterpch

Subtitle under plotsub

Main title at top of plotmain

Label of second variableylab

Label of first variablexlab

Line typelty

Color of pointscol

Range of second (y) variableylim

Range of first (x) variablexlim

ExplanationArgument

159

> par(mfrow=c(2,3))

> plot(air$radiation,air$ozone)

> plot(air$radiation,air$ozone,xlim=c(0,500),ylim=c(0,8))

>plot(air$radiation,air$ozone,xlab="radiation",ylab="ozone")

> plot(air$radiation,air$ozone,pch="*")

> plot(air$radiation,air$ozone,col=3)

> plot(air$radiation,air$ozone,main="Scatter Plot of radiation vs
ozone")

160

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

air$radiation
ai

r$
oz

on
e

0 100 200 300 400 500

0
2

4
6

8

radiation

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

*

*

**

*

*
**

*

*
*

*

*
**

*

*
*
*

*

*

*
*
**

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
**
**

**

*
*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*
**

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*
*

*

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5
Scatter Plot of radiation vs ozone

air$radiation

ai
r$

oz
on

e
0 50 100 150 200 250 300

1
2

3
4

5

161

Adding elements to an existing Plots

Interactively identify pointsidentify

Add legendlegend

Add titlestitle

Sit lowess scatterplot smoothlowess

Fit least-square linelsfit

Add straight lineabline

Add lines connecting pointslines

Add texttext

Add pointspoints

ExplanationFunction

162

> plot(air$radiation,air$ozone)
> abline(lsfit(air$radiation,air$ozone))
> lines(lowess(air$radiation,air$ozone),lty=4)

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

163

> title("Ozone vs. Radiation")

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

Ozone vs. Radiation

164

> legend(40,5,c("lowess","least squares"),lty=c(4,1))

air$radiation

ai
r$

oz
on

e

0 50 100 150 200 250 300

1
2

3
4

5

Ozone vs. Radiation

lowess
least squares

165

> attach(fuel.frame)

> plot(Weight,Fuel,type="n",xlab="Weight \n Small = S, Medium = M")

> points(Weight[Type == "Small"],Fuel[Type == "Small"],pch=“S”)

> points(Weight[Type == "Medium"],Fuel[Type == "Medium"],pch=“M”)

Weight
 Small = S, Medium = M

F
ue

l

2000 2500 3000 3500

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

SS

S

S S

S

S

S

S

S

S

S

S

M

M

M MMM

MM

M

M

M M

M

166

> size <- c("Small","Sporty","Compact","Medium","Large","Van")

> plot(Weight,Fuel,type="n")

> text(Weight,Fuel,labels=size,col=1:length(size)

Weight

F
ue

l

2000 2500 3000 3500

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

SmallSporty

Compact

Medium Large

Van

Small

Sporty

Compact

Medium

Large

Van

Small

Sporty

Compact

Medium

Large

Van

Small

Sporty

Compact

Medium
Large

Van

Small
Sporty

Compact

Medium

Large

Van

SmallSporty

Compact

Medium

Large

Van

Small

Sporty

Compact

Medium LargeVanSmall

SportyCompact

Medium

Large

Van Small

SportyCompact

Medium

Large

Van SmallSporty

Compact

MediumLarge

Van

167

• We can plot data in S-Plus in any of the following ways
– as points
– as lines
– both lines and points(with points isolated)
– as “overstruck” pints and lines (points not isolated)
– as vertical line for each data point (known as “ high-density plot”)
– as a stairstep plot
– As an empty plot, with axes and labels but not data plotted.

• Different graphic functions have different default choices.
– Scatter plot use points as defaults (plot)
– Time series plot uses lines as the default (ts.plot)

168

• To choose the plot type we use type= .
– type=“p” points

– type=“l” lines

– type=“b” both points and lines

– type=“o” lines with points overstruck

– type=“h” high-density plot

– type=“s” stairstep plot

– type=“n” no data plotted

169

> par(mfrow=c(2,3))

> x <- seq(-2,2,0.1)

> y <- x^2

> plot(x,y,main="Points Type")

> plot(x,y,type="l",main="Line Type")

> plot(x,y,type="b",main="Both Points
and Lines")

> plot(x,y,type="o",main="Lines with
points oversrtuck")

> plot(x,y,type="h",main="High
Density plot")

> plot(x,y,type="s",main="Stairstep")

Points Type

x

y

-2 -1 0 1 2

0
1

2
3

4

Line Type

x

y

-2 -1 0 1 2

0
1

2
3

4

Both Points and Lines

x

y

-2 -1 0 1 2

0
1

2
3

4

Lines with points oversrtuck

x

y

-2 -1 0 1 2

0
1

2
3

4

High Density plot

x

y

-2 -1 0 1 2

0
1

2
3

4

Stairstep

x

y

-2 -1 0 1 2

0
1

2
3

4

170

> plot(x,y,type="p",pch="H")
H

H

H

H

H

H

H

H

H

H
H

H
H

H
H

H H H H H H H H H H H
H

H
H

H
H

H

H

H

H

H

H

H

H

H

H

x

y

-2 -1 0 1 2

0
1

2
3

4

171

Exercises: Graphic

Q1. a. Attach the “ethanol” data frame.

b. On the same graph sheet plot
• histogram

• qqnorm

• boxplot

for the variable NOx

c. Do a scatter plot of NOx vs E. Add a title. And
use the plotting symbol to be “#”.

172

Q2. In a single figure, plot the functions sin,
cos, sin+cos with different colors and line
styles. Use 1000 points in the interval –
2*pi and 2*pi and label the figure with a
title, subtitle and axis label.

Q3. For the gun data create a boxplot for the
variable Rounds for each of the Method.
Do the same for Team.

173

174

• Functions used to read data in S-PLUS
• Reading ASCII data into S-PLUS
• Reading Non-ASCII file format and databases into

S-PLUS
• Exporting S-PLUS objects as

– Text
– Formatted and unformatted ASCII
– Other file format and databases

• Exporting results from analysis and graphics from
S-PLUS for report writing.

175

Functions used to read data in S-PLUS

– scan Function

– read.table Function

– import.data Function

176

scan(file="", what=numeric(), n=<<see below>>,
sep=<<see below>>, multi.line=F, flush=F,
append=F, skip=0, widths=NULL,

strip.white=<<see below>>)

177

file a character string giving the name of the file to be scanned.
If file is missing or empty (""), data will be read from
standard input; scan will prompt with the index for the next
data item, and data input can be terminated by a blank line.
If file = "clipboard", scan reads from the Windows
clipboard.

OPTIONAL ARGUMENTS:

178

what a vector of mode numeric, character, or complex, or a list of
vectors of these modes. Objects of mode logical are not
allowed. If what is a numeric, character, or complex vector,
scan will interpret all fields on the file as data of the same
mode as that object. So, what=character() or what="" causes
scan to read data as character fields. If what is missing, scan
will interpret all fields as numeric.
If what is a list, then each record is considered to have
length(what) fields and the mode of each field is the mode
of the corresponding component in what. When widths is
given as a vector of length greater than one, what must be a
list of the same length as widths.

179

n maximum number of items (number of records times fields
per record) to read from the file. If omitted, the function
reads to the end of file (or to an empty line, if reading from
standard input).

sep separator (single character), often "\t" for tab or "\n" for
newline. If omitted, any amount of white space (blanks,
tabs, and possibly newlines) can separate fields. If widths is
specified, then sep tells what separator to insert into fixed-
format records.

multi.line if FALSE, all the fields must appear on one line: if
scan reaches the end of the line without reading all
the fields, an error occurs. Thus the number of fields
on each line must be a multiple of the length of what
unless flush=TRUE. This is useful for checking that
no fields have been omitted. If this argument is
TRUE, reading will continue, disregarding where
new lines occur.

180

flush if TRUE, scan will flush to the end of the line after reading
the last of the fields requested. This allows putting
comments after the last field that are not read by scan, but
also prevents putting multiple sets of items on one line.

append if TRUE, the returned object will include all the elements
in the what argument, with the input data for the respective
fields appended to each component. If FALSE (the
default), the data in what is ignored, and only the modes
matter.

skip the number of initial lines of the file that should be skipped
prior to reading.

181

widths vector of integer field widths corresponding to items in the
what argument. The widths argument provides for common
fixed-format input. If widths is not NULL, then as scan
reads the characters in a record, it automatically inserts a
sep character after it reads widths[1] characters (widths[1]
represents the width of the first field), then another sep after
widths[2] characters, and so on, allowing the record to be
read as if your input were delimited by the sep character to
begin with. The default sep inserted when using widths is
"1" (binary 1); if your input contains this character, you will
need to set the sep argument to a character that you know is
not contained anywhere in the input. One caveat: the
widths you specify must correspond exactly to field widths
in your input; if they do not, you may get "field
undecipherable" errors in (seemingly) odd places, or the
input may be silently but incorrectly digested. The default
for widths is NULL. Note that if widths has a length
greater than one, what must be a list of the same length.

182

strip.white vector of logical values corresponding to items in
the what argument. The strip.white argument allows
you to strip leading and trailing white space from
character fields (scan always strips numeric fields in
this way). If strip.white is not NULL, it must be
either of length 1, in which case the single logical
value tells whether to strip all fields read, or the
same length as what, in which case the logical
vector tells which fields to strip (strip the leading
and trailing white space from field 1 if strip.white[1]
is TRUE and field 1 is a character field, strip from
field 2 if strip.white[2] is TRUE and field 2 is a
character field, and so on). If widths is specified, the
default for strip.white is TRUE (strip all fields),
otherwise the default is NULL (do not strip any
fields). Note: if you are reading free format input by
leaving sep unspecified, then strip.white has no
effect.

183

read.table(file, header=<<see below>>,
sep, row.names, col.names, as.is=F,
na.strings="NA", skip=0)

184

file character string naming the text file from which to read the
data. The file should contain one line per row of the table.
The fields may be separated by the character in sep, or the
file may be fixed format with the fields starting at fixed
points within each row.
The value file = "clipboard" refers to the Windows
clipboard.

REQUIRED ARGUMENTS:

185

headerlogical flag: if TRUE, then the first line of the file is used as
the variable names of the resulting data frame. The default
is FALSE, unless there is one less field in the first line of
the file than in the second line. Be careful, however, before
accepting the default behavior. What looks like a valid
header line may contain an empty cell, so that what appears
to be a line with one less field than the other lines is
actually a line with the same number of fields. In this case,
header is set to FALSE. Such behavior may occur, for
example, when copying a spreadsheet via the Clipboard. If
you want to ensure that the headers and row names appear
as in the Clipboard, use header=T and row.names=1.

OPTIONAL ARGUMENTS:

186

sep the field separator (single character), often "\t" for tab. If
omitted, any amount of white space (blanks or tabs) can
separate fields. To read fixed format files, make sep a
numeric vector giving the initial columns of the fields.

row.names optional specification of the row names for the data
frame. If provided, it can give the actual row names,
as a vector of length equal to the number of rows, or
it can be a single number or character string. In the
latter case, the argument indicates which variable in
the data frame to use as row names (the variable will
then be dropped from the frame). If row.names is
missing, the function will use the first nonnumeric
field with no duplicates as the row names. If no such
field exists, the row names are 1:nrow(x). You can
force this last version, regardless of suitable fields to
use as row names, by giving row.names=NULL.
Row names, wherever they come from, must be
unique.

187

col.names optional names for the variables. If missing, the
header information, if any, is used; if all else fails,
"V" and the field number are be pasted together.
Variable names, wherever they come from, must be
unique. Variable names will be converted to
syntactic names before assignment, but not if they
came from an explicit col.names argument.

as.is control over conversions to factor objects. By
default, non-numeric fields are turned into factors,
except if they are used as row names. If some or all
fields should be left as is (typically producing
character variables), set the corresponding element
of as.is to TRUE. The argument will be replicated as
needed to be of length equal to the number of fields;
thus, as.is=TRUE leaves all fields unconverted.

188

na.strings character vector; when character data is converted
to factor data the strings in na.strings will be
excluded from the levels of the factor, so that if any
of the character data were one of the strings in
na.strings the corresponding element of the factor
would be NA. Also, in a numeric column, these
strings will be converted to NA.

skip the number of lines in the file to skip before reading data.

189

import.data(DataFrame, FileName, FileType,
TargetStartCol=1,EndCol="END",
NameRow, StartRow, EndRow,ColNames,
Format, Delimiters, Preview, Filter,
OdbcConnection, OdbcSqlQuery,

SeparateDelimeters=F)

190

DataFrame a character string giving the name of the data frame
to be created.

FileName a character string giving the name of the file to
import.

FileType a character string specifying the type of file to
import. It must be one of: "ACCESS", "ASCII",
"DBASE", "EXCEL", "FASCII", "GAUSS",
"LOTUS", "MATLAB", "ODBC", "PARADOX",
"QUATTRO", "SAS", "SAS_TPT", "SPLUS",
"SIGMAPLOT", "SPSS", "SPSS_POR", "STATA",
"SYSTAT".

REQUIRED ARGUMENTS:

191

TargetStartCol an integer specifying the starting column in
the source.

EndCol an integer specifying the end column in the source,
or the character string "END".

NameRow the row containing the column names.
StartRow an integer specifying the starting row from range in

source.
EndRow an integer specifying the end row from range in

source.
ColNames a vector of character strings to use as the column

names in DataFrame.
Format see notes on Importing ASCII Files, in the

Importing and Exporting Data chapter in the User’s
Guide.

OPTIONAL ARGUMENTS:

192

Delimiters range of characters that might be used as delimiters.
Preview imports everything as characters.

Filter see the chapter on Importing and Exporting Data in the
Users Guide.

OdbcConnection required if FileType="ODBC". Encrypted
character string containing ODBC
connection string.

OdbcSqlQuery only meaningful if FileType="ODBC". It
contains an optional SQL query. If no query
is specified the first table of the data source
is used.

SeparateDelimiters a logical value; if TRUE, the separator is
strictly a single character, else repeated
consecutive separator characters are treated
as one separator.

193

• Reading numeric data into a vector

• Reading non-numeric data into a vector

• Reading a Data Frame

194

Example1: Reading numeric data into a vector

• Import the file c:\datasets\score1.txt into S-
PLUS and save it to the vector testscore1
– First lets look at the contents of the file

c:\datasets\score1.txt

– Then do

> testscore1 <- scan("c:\\datasets\\score1.txt")

> testscore1

[1] 9 8 10 7 8 9 1 0 9 9

195

Example2: Reading numeric data into a vector

• Import the file c:\datasets\score2.txt into S-
PLUS and save it to the vector testscore1
– First lets look at the contents of the file

c:\datasets\score2.txt
– Then do
> testscore2 <- scan("c:\\datasets\\score2.txt",
+ sep=",")
> testscore2
[1] 6 5 5 7 17 5 6 5

196

Example3: Reading non-numeric data into a vector

• Import the file c:\datasets\names1.txt into S-PLUS
and save it to the vector class.names
– First lets look at the contents of the file

c:\datasets\names1.txt

– Then do

> names <- scan("c:\\datasets\\names1.txt",what="")

> names

[1] "Andreas" "Sharon" "Kevin" "Sam"

[5] "David" "Alice" "Cindy" "Dan"

[9] "Mary" "Ken"

197

Example4: Reading a Data Frame

• Import the file c:\datasets\authors.txt into S-
PLUS and save it to the data frame
authors.df
– First lets look at the contents of the file

c:\datasets\authors.txt

– Then do

> authors.df <-
read.table("c:\\datasets\\authors.txt")

198

> authors.df

FirstName LastName Age Income Home

1 Lorne Green 82 1200000 California

2 Loren Jaye 40 40000 Washington

3 Robin Green 45 25000 Washington

4 Robin Howe 2 0 Alberta

5 Billy Jaye 40 27500 Washington

199

Reading Non-ASCII data into S-PLUS

• Using read.table where file=“clipboard”
– It is an easy way to import formatted text into

SPLUS by pasting formatted text to the
clipboard and then reading it into S-Plus using
read.table where file=“clipboard”

• Using import.data

200

Example 5: Using read.table where file=“clipboard”

• Suppose you have the file
c:\datasets\example.xls. We want to import
the data into SPLUS

201

• Highlight the area you want to import

• Copy to the clipboard by CTRL-C

202

• In SPLUS do the following

> read.table(file="clipboard",header=T)

subject height

1 1 3

2 2 5

3 3 7

• Note: header=T was used because the
first raw of the file is the variable name

203

Example 6: Using import.data function

• Import the file example.xls using the
function import.data

• To do so you type the following in S-PLUS
> import.data("c:\\datasets\\example.xls",

+ FileType="EXCEL",

+ NameRow="1",

+ DataFrame="example")

204

• The result is

205

Functions used to read data out from S-PLUS

• export.data

• data.dump function and data.restore

• sink

• write.table

206

• export.data(DataSet, FileName, FileType,
...)

207

REQUIRED ARGUMENTS:

DataSet a character string giving the name of the
data object of class data.frame, matrix
or vector to be created.

FileName a character string giving the name of the
file and directory

FileType one of "ACCESS", "ASCII", "DBASE",
"EXCEL", "FASCII", "GAUSS",
"LOTUS", "MATLAB", "ODBC",
"PARADOX", "QUATTRO", "SAS",
"SAS_TPT", "SPLUS", "SIGMAPLOT",
"SPSS", "SPSS_POR", "STATA",
"SYSTAT".

208

OPTIONAL ARGUMENTS:

Columns specify a subset of the columns to be
exported.

Rows specify a subset of the rows to be
exported.

Delimiter character to be used as delimiter.

ColumnNames output names: true or false

Quotes quotes around characters: true or false

LineLength maximum length of one line

209

OdbcConnection required and meaningful only if
FileType = "ODBC". This is an
encrypted character string
containing the ODBC
connection string.

OdbcTable required name of table to be created if
FileType ="ODBC".

210

Example 7: Export data frame into an
ASCII file Format

Export the data frame air into the file
c:\datasets\air.txt
In S-PLUS do the following:
> export.data(DataSet="air",

Delimiter=",",
ColumnNames=T,
Quotes=T,
FileType="ASCII",
FileName="c:\\datasets\\air.txt")

211

• The file “air.txt” is created in the directory
“c:\datasets”. It looks as follows

212

• data.dump(names,file=“dumpdata”)

• It transfer an S-Plus data object and functions to
another person

• It is considered to be the most efficient way for
exporting S-PLUS object

• You can export more than one object to the same
file

• You have to use data.restore() to recreate the
object in another session.

213

Example 8: Export two data frames Using
data.dump()

> data.dump(c("air","fuel.frame"),

+ file="c:\\datasets\\data.dmp")

[1] "c:\\datasets\\data.dmp"

In another S-PLUS session you can restore the
data by

> data.restore(“c:\datasets\\data.dump”)

214

• sink(file=“filename”)
• It is used to save the output for reading later by

redirecting the output to a file.
• To do that you do the following

>sink(“filename”)
S-PLUS stuff…
>sink()

• To echo the input to a file along with the output
use the set options(echo=T)

215

Example 9: sink() function

> sink("c:\\datasets\\ouput.txt")
> x <- 1:10
> x
> y <- x/20
> y
> sink()
The ouput.txt file will contain the following:
[1] 1 2 3 4 5 6 7 8 9 10
[1] 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.50

216

Example 9: sink() function using
options(echo=T)

> options(echo=T)

options(echo = T)

> sink("c:\\datasets\\output.txt")

sink("c:\\datasets\\output.txt")

> x <- 1:5

> y <- x*2

> x

> y

> sink()

The file output.txt contains:
x <- 1:5
y <- x * 2
x
[1] 1 2 3 4 5
y
[1] 2 4 6 8 10
sink()

217

• write.table(data, file = "", sep = ",", append
= F, quote.strings = F, dimnames.write = T,
na = NA, end.of.row = "\n")

• It can be used to save matrices and data
frame as ASCII.

218

Example 10: write.table() function

> write.table(fuel.frame,"c:\\datasets\\fuel.txt")

write.table(fuel.frame, "c:\\datasets\\fuel.txt")

219

• write(x, file="data", ncolumns=<<see
below>>, append=F)

• It writes the contents of the data to a file in
ASCII format.

220

Example 11: export.graph() function

> write(x,"c:\\datasets\\x.txt")

• The file x.txt contains

1 2 3 4 5

221

• export.graph function

• Syntax

export.graph(FileName, Name,
ExportType=<<see below>>, ...)

222

• FileName a character string giving the
name of the file to be created.

• Name a character string specifying
the object path name for a
graphsheet.

223

• ExportType one of the character strings:
"BMP", "CGM", "EPS TIFF" (EPS w/TIFF),
"EPS", "EPS PRINT" (EPS using PostScript
printer driver), "GIF", "HGL", "IMG", "JPG",
"MET", "PCL", "X", "PICT", "SDW" (AmiPro),
"TIFF", "TGA", "WMF", "WPB" (WordPerfect
Bitmap), "WPV" (WordPerfect Vector). If
ExportType is not specified, the file type will be
inferred from the file extension used in the
FileName argument.

224

Example 12: export.graph() function

> attach(air)

> plot(wind,ozone)

>export.graph(Name="GSD2",ExportType="
GIF“,
FileName="c:\\datasets\\mygraph.gif")

• A file name mygraph.gif is created.

225

Exercises: Data Import & Export

Q1. Import the file c:\datasets\Gpadata.sd2 into
SPLUS. (Note that Gpadata.sd2 is a SAS file)?

Q2. Import the file c:\datasets\gpa.txt into SPLUS?
Q3. Export the data frame gas data frame to

c:\datasets\gas.txt?
Q4. Export the data frame gas data frame to

c:\datasets\gas.sd2?
Q5. Use the function data.dump() to transfer the gun

and car.all data frame to another S-PLUS session.

226

Q6. Write the data frame galaxy to a text file
using the sink() function?

Q7. Create a graph and export it to
c:\datasets\graph.gif?

227

228

• Functions and Operators

• Writing Functions

229

• Calling an S-PLUS Function

230

• All functions in S-Plus have both required and
optional arguments
– Arguments are enclosed in parentheses and separated

by commas.
– The help file explains which arguments are required

and which are optional.
– The args function is used to find out the arguments of

the function
– Arguments with “=“ sign have a default values and are

optional.

231

• What are the argument of the sum function?
> args(mean)
function(x, trim = 0, na.rm = F)
NULL
So,
REQUIRED ARGUMENTS

x numeric object. Missing values (NAs) are allowed.
OPTIONAL ARGUMENTS
trim fraction (between 0 and .5, inclusive) of values to be trimmed

from each end of the ordered data. If trim=.5, the result is the
median.

na.rm logical flag: should missing values be removed before
computation?

232

• To invoke a function you must supply
parentheses even if no argument is
required. Otherwise it will print out the
definition of the function

Example:
> search

function()

.Internal(search(), "S_database", T, 3)

> search()

[1] "d:\\sp2000\\users\\fhilal_Data"

[2] "d:\\sp2000\\splus_Functio"

233

• Arguments must be supplied by position, by name
or both
– If they are supplied by position, then they should be

entered exactly in the same order as in the function
definition

Example:
> y

[1] 1.0 1.1 1.3 2.0 2.4

> mean(y)

[1] 1.56

> # Computes the 20% trimmed mean

> mean(y,0.2)

[1] 1.466667

234

– If they are supplied by name, then they may entered in
any order. The name should be followed by the equal
sign and then the argument value.

– Note that the argument name can be abbreviated to the
first few characters as long as the abbreviation uniquely
identifies the argument

Examples:
> mean(x=y,trim=0.2)

[1] 1.466667

> mean(trim=0.2,x=y)

[1] 1.466667

> mean(tr=0.2,x=y)

[1] 1.466667

235Sequence:

Outer product%o%

Matrix multiplication%*%

Module%%

Integer Divide%/%

Unary minus-

Exponential^

Division/

Multiplication*

Subtraction-

Addition+

DescriptionOperator •All operators
except the urinary
Minus need two
operands, one to
the left and one to
the right.

•The operands
may be of single
numbers, vectors,
or matrices, as
long as the
operation makes
sense.

236

> 8+10

[1] 18

> 8-10

[1] -2

> 8*10

[1] 80

> 8/10

[1] 0.8

> 8^10

[1] 1073741824

> -8+10

[1] 2

> 10 %/% 8

[1] 1

> 10 %% 8

[1] 2

> mat1 <- matrix(1:6,nrow=2)

> mat1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> mat2 <- matrix(1:3,nrow=3)

> mat1%*%mat2

[,1]

[1,] 22

[2,] 28

237

> (1:3) %o% (4:5)

[,1] [,2]

[1,] 4 5

[2,] 8 10

[3,] 12 15

> 4:9

[1] 4 5 6 7 8 9

238

• It is performed element-by-element

• If the length of one element is less than the
other then the shorter one is cyclically
replicated to the same length as the longer
one.

239

> vec1 <- c(2,6,9)

> vec1

[1] 2 6 9

> vec2 <- vec1^2

> vec2

[1] 4 36 81

> vec1+vec2

[1] 6 42 90

> mat1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> mat1*mat1

[,1] [,2] [,3]

[1,] 1 9 25

[2,] 4 16 36

240

> vec1-3

[1] -1 3 6

> mat1-4

[,1] [,2] [,3]

[1,] -3 -1 1

[2,] -2 0 2

> mat1-c(1,2)

[,1] [,2] [,3]

[1,] 0 2 4

[2,] 0 2 4

> vec1+(3:8)

[1] 5 10 14 8 13 17

> vec1+(3:7)

[1] 5 10 14 8 13

Warning messages:

Length of longer object is
not a multiple of the length of
the shorter object in: ve

c1 + (3:7)

241Not!

Control Or||

Control And&&

Elementwise Or|

Elementwise And&

Greater Than or Equal>=

Greater Than>

Less Than or Equal<=

Less Than<

Not Equals!=

Equals==

DescriptionOperator •All operators
except the Urinary
Not need two
operands, one to
the left and one to
the right.

•The operands
may be of single
numbers, vectors,
or matrices, as
long as the
operation makes
sense.

242

> vec1

[1] 2 6 9

> vec1 == 9

[1] F F T

> vec1 != 9

[1] T T F

> vec1 < 4

[1] T F F

> vec1 <= 6

[1] T T F

> vec1 > 6

[1] F F T

> vec1 >= 6

[1] F T T

243

> vec1

[1] 2 6 9

> vec2

[1] 4 36 81

> vec1 < 7 & vec2 <=10

[1] T F F

> (!(vec1 < 7 & vec2 <=10))

[1] F T T

> vec1 < 7 | vec2 <=10

[1] T T F

> mode(vec1)!="character" &&

min(vec1)>0

[1] T

> mode(vec1)!="character" ||
min(vec1)>0

[1] T

244

•You can use a combination of logical operators and
subscripting to extract data .

Example:
> vec3 <- 1:20

> vec4 <- vec3[vec3 < 7]

> vec4

[1] 1 2 3 4 5 6

245

•Four functions that are related to logical operators

�any. Logical sum. It tests to see if any elements are
TRUE.

�all. Logical product. It tests to see if all elements
are TRUE.

�all.equal. Test whether two objects are identical

�objdiff. Displays differences between two objects.

Examples:
> all(vec1>7)

[1] F

> any(vec1>7)

[1] T

246

Sequence:

Urinary minus-

Exponentiation^

Subscripts[[[

List and data frame extraction$

Expression delimiter (parenthesis)(

Expression delimiter (Curly Brace){

ExplanationOperator

247Assignments<- _ ->

Global assignment<<-

Logical operators& && | ||

Unary not!

Logical comparisons< > <= >= == !=

Addition and subtraction+ -

Multiplication and division* /

Matrix multiplication, Integer
Division, Modulo

%*% %/% %%

ExplanationOperator

248

• There are two types of functions
– Built in functions

– User-created function

• Writing functions can be done in two way:
– Modify an existing function

– Write original function

249

To call a Built-in S-Plus function:
at the command line type

> name(arguments)

where,
• name: is the name of the function

• arguments: argument are required without a
specified default value.

250

– mean(x): gives the arithmetic mean of x.

– var(x): gives the variance of x.

– stem(x): draw a stem-and-leaf plot for x.

– floor(x): next smaller integer.

– sum(x): gives the sum of x.

– log10(x): gives the base 10 logarithm of x.

– cor(x, y): gives the correlation between x and y

– plot(x, y): plot x versus y.

251

> attach(air)

> mean(ozone)

[1] 3.247784

> cor(ozone,wind)

[1] -0.5989278

> var(wind)

[1] 12.66803

> stem(wind)
N = 111 Median = 9.7

Quartiles = 7.4, 11.5

Decimal point is at the colon

2 : 38

3 : 4

4 : 0066

5 : 11177

6 : 333333999999

7 : 444444444

8 : 0000000666

9 : 222222777777777

10 : 3333333333999999

11 : 5555555555

12 : 000066

13 : 28888

14 : 33339999

15 : 555

16 : 66

17 :

18 : 4

High: 20.1 20.7

252

Function(arguments) {

body

}

Where,

•arguments give the arguments of the function separated by
commas

•body is the body of the function made up of one or more S-PLUS
expressions

253

• Any S-PLUS objects can be passed as an
argument including functions.

• Variables defined within the body of the
function are local to that function. Which
mean that only last as long as the function is
executing.

• You can make a global assignment within
the body of the function by using the global
assignment <<- or the function assign.

• A function returns the value of the last
evaluated expression in the body of the
function.

254

• To create or modify functions within S-
PLUS do one of the following
– At the command line, use an assignment

statement followed by the function definition
– Use the edit (ed if UNIX) or the fix functions to

use an editor within S-PLUS.

• To create or modify a function outside S-
PLUS do the following
– For Unix use the UNIX editor like vi or emacs

and for windows use the Notepad to create an
ASCII file with a function definition, then use
the source function to read the file in S-PLUS.

255

Create a function to calculate the standard deviation.

Method I:

> st.dev <- function (x) {sqrt(var(x))}

> st.dev(vec1)

[1] 3.511885

Method II:

> fix(st.dev)

This will open the following window:

> st.dev(vec2)

[1] 38.68247

256

Then fill the appropriate code as
follows:

Then save and exit.

Test the function:

257

• There are three basic types of arguments
– Required arguments
– Optional arguments with default values
– Variables arguments

• Any object may be passed as an argument
• Arguments do not have to be explicitly

typed (it might accept either a character
vector or a logical matrix)

258

• Required argument must be listed before
default arguments.

• Arguments are evaluated only as needed
when they appear in the body of the
function.

• Default arguments are specified by
following the argument name by an equal
sign and an expression that evaluates to the
default value.

259

Passing variable arguments

Create a function to plot the sin function evaluated at numx
values between minx and maxx.

> sin.plot <- function(minx,maxx,numx=100,type="l"){

+ x <- seq(minx,maxx,length=100)

+ y <- sin(x)

+ plot(x,y,type=type)

+ }

> sin.plot(0,4*pi)

> title("sin(x)") x

y

0 2 4 6 8 10 12

-1
.0

-0
.5

0.
0

0.
5

1.
0

sin(x)

260

Create a function to plot the sin function evaluated at numx
values between minx and maxx.

> sin.plot <- function(minx,maxx,numx=100,type="l“,…){

+ x <- seq(minx,maxx,length=100)

+ y <- sin(x)

+ plot(x,y,type=type,…)

+ }

> sin.plot(0,4*pi,main=“sin(x) from 0 to 4*pi”)

sin(x) from 0 to 4*pi

x
y

0 2 4 6 8 10 12

-1
.0

-0
.5

0.
0

0.
5

1.
0

261

• To perform conditional evaluation of expression
we need to use
– if
– if-else
– ifelse function

• The if statement is used to evaluate an expression
if some condition is true. And an else statement is
used if an alternate action is needed

• The ifelse function takes a logical vector along
with vectors of values to return if each element of
the vector is true or false.

262

•if (condition) {expression}

•if (condition) {

expression1}

else {

expression2

}

•ifelse(test.vec,yes.vec,no.vec)

263

•Avoid getting an error message when x is a character of <= 0.

> x <-3

> if(mode(x)!="character" && min(x)>0) log(x)

[1] 1.098612

> x <- 3

> if(mode(x)!="character" && min(x)>0) log(x)

[1] 1.098612

> x <- "a"

> if(mode(x)!="character" && min(x)>0) log(x)

NULL

264

•Give a message saying that you have invalid data

> myfun <- function(x){

+ if(mode(x)!="character" && min(x)>0) out<-log(x)

+ else out <- "not valid value"

+ out

+ }

> y <- 4

> myfun(y)

[1] 1.386294

> y <- "b"

> myfun(y)

[1] "not valid value"

265

•Function that will return the smaller of the two numbers:

> smaller <- function(x,y)

+ {}

> smaller <- function(x,y){

+ ifelse(x<y,x,y)

+ }

> smaller(1:5,5:1)

[1] 1 2 3 2 1

266

• Use for to loop over the values of a vector
– for (name in value) {expression}

• Use while to repeat until some condition
changes
– while (condition) {expression}

• Use apply to repeat a procedure for all rows
or columns of a matrix
– apply(data, margin, function,..)

267

> for(i in 1:5)

+ { print(i)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

> i <- 0

> while(i < 4){

+ print("i is less than 4")

+ i <- i+1

+ }

[1] "i is less than 4"

[1] "i is less than 4"

[1] "i is less than 4"

[1] "i is less than 4"

268

> mat1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> apply(mat1,2,mean)

[1] 1.5 3.5 5.5

> apply(mat1,1,mean)

[1] 3 4

269

Exercises: Functions

Q1. Create a function that will take one vector
of data x as an input and will create a
histogram. Try the function.

Q2. Modify the above function to create on
the same graphic window a

• histogram

• boxplot

Try the function

270

Q3. Create a function that will take a vectors x and it
will plot the square root of x. If the data is invalid
then to print a message saying. Try the function.
You need to use two built in functions the any
function and the warning function.

Q4. Create a function that plots any function
evaluated at a certain number of values of x
between min.x and max.x. On the ylab specify the
name of the function you plotted also give the plot
a title. I want the ylab and the title to be arguments
of the function.

271

Q5. Create a function that will find the coefficient of
variation of a set of data.

The coefficient of variation is the ration between
the standard deviation and the mean.

Q6. The above function will not work if there is
missing values in the data. Modify the function
you created in Q5 to discard the missing values.
You need to use the function is.na.

272

273

274

Solution: Introduction

Q1. search()

Q2. find(glm)

or, find(glm,numeric=T)

Q3. objects(2,pattern="*glm*")

275

Solution:Data Objects

Q1.
> Letters <- c(T,F)
> mode(Letters)
[1] "logical"
> Letters <- c("T","F")
> mode(Letters)
[1] "character“

Q2. I get the following:
Error in num1 + num2: Non-
numeric first operand

Q3.
> mode(num1)<- "numeric"

> mode(num2)<- "numeric"

> num1+num2

[1] 5

276

Q4. a.
> rep(5,1)
[1] 5
> rep(1,5)
[1] 1 1 1 1 1
> rep(c(0,6),2)
[1] 0 6 0 6
> rep(c("a","b"),3)
[1] "a" "b" "a" "b" "a" "b"
> rep(1:3,4)
[1] 1 2 3 1 2 3 1 2 3 1 2 3
> rep(c(1,5,8),length=10)
[1] 1 5 8 1 5 8 1 5 8 1
> rep(1:5,1:5)
[1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5

5

Q4. b.
> x <- rep(1:5,1:5)
> length(x)
[1] 15

Q4.c.
> length(x) <- 5
> x
[1] 1 2 2 3 3

So, you truncated x to only
5 elements.

277

Q5.
> seq(1,5,1)
[1] 1 2 3 4 5
> seq(1,5)
[1] 1 2 3 4 5
> seq(5)
[1] 1 2 3 4 5
> seq(5,1,-1)
[1] 5 4 3 2 1
> seq(5:1)
[1] 1 2 3 4 5
> 5:1
[1] 5 4 3 2 1
> seq(3,4,0.1)
[1] 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

278

Q6.

> x <- seq(1,15,1)

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> y <- x>5

> y

[1] F F F F F T T T T T T T T T T

> z <- x[x>5]

> z

[1] 6 7 8 9 10 11 12 13 14 15

279

Q7.
> grade <- c(5,7,8)
> name <- c("Sam","Dan","Susan")
a.
> c(grade,name)
[1] "5" "7" "8" "Sam" "Dan" "Susan“

So the numerical values where forced into
characters.

b.
> c(grade,T,F,T,F)
[1] 5 7 8 1 0 1 0

So, the logical values where forced into numerical
values.

280

Q8.

> mat <- matrix(1:6,ncol=3)

> mat

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> mat <- matrix(1:6,ncol=3,byrow=T)

> mat

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

281

Q9.a.
> grade1 <- c(5,7,8)
> grade2 <- c(6,6,10)
> grade.mat <- rbind(grade1,grade2)
> grade.mat

[,1] [,2] [,3]
grade1 5 7 8
grade2 6 6 10

Q9.b.
> mode(grade.mat)
[1] "numeric"

282

Q9.c.

> dim(grade.mat)

[1] 2 3

Q9.d.

> dimnames(grade.mat)

[[1]]:

[1] "grade1" "grade2"

[[2]]:

character(0)

283

Q9.e.
> name <- c("Sam","Dan","Suzan")
> dimnames(grade.mat)[[2]] <- name
> grade.mat

Sam Dan Suzan
grade1 5 7 8
grade2 6 6 10

Q9.f.
> grade.mat[,1]
grade1 grade2

5 6
> grade.mat[,"Sam"]
grade1 grade2

5 6

284

Q9.g.
> grade.mat[,c(T,F,T)]

Sam Suzan
grade1 5 8
grade2 6 10

Q9.h.
> t(grade.mat)

grade1 grade2
Sam 5 6
Dan 7 6

Suzan 8 10

285

Q10.a.
> FirstName <- c("Lorne","Loren","Robin","Robin","Billy")

> LastName <- c("Green","Jaye","Green","Howe","Jaye")

> Age <- c(82,40,45,2,40)

> Income <- c(1200000,40000,25000,0,27500)

> Home <-
c("California","Washington","Washington","Alberta","Washington")

> authors <- data.frame(FirstName,LastName,Age,Income,Home)

> authors

FirstName LastName Age Income Home

1 Lorne Green 82 1200000 California

2 Loren Jaye 40 40000 Washington

3 Robin Green 45 25000 Washington

4 Robin Howe 2 0 Alberta

5 Billy Jaye 40 27500 Washington

286

Q10.b.

> authors$Age[1:3]

[1] 82 40 45

> authors[1:3]$Age

[1] 82 40 45 2 40

287

Q11.a.
> class(air)
[1] "data.frame“
Q11.b.
> names(air)
[1] "ozone" "radiation" "temperature" "wind"
Q11.c.
> row.names(air)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13"
[14] "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26"
[27] "27" "28" "29" "30" "31" "32" "33" "34" "35" "36" "37" "38" "39"
[40] "40" "41" "42" "43" "44" "45" "46" "47" "48" "49" "50" "51" "52"
[53] "53" "54" "55" "56" "57" "58" "59" "60" "61" "62" "63" "64" "65"
[66] "66" "67" "68" "69" "70" "71" "72" "73" "74" "75" "76" "77" "78"
[79] "79" "80" "81" "82" "83" "84" "85" "86" "87" "88" "89" "90" "91"
[92] "92" "93" "94" "95" "96" "97" "98" "99" "100" "101" "102" "103" "104"

[105] "105" "106" "107" "108" "109" "110" "111"

288

Q12.a.
> list1 <- list(a=1:3,b=rep(4,5),l=letters[1:5])
> list2 <- list(list1=list1,old=list(1:5,7:4),c(2,3))
Q12.b.
> names(list1)
[1] "a" "b" "l"
> names(list2)
[1] "list1" "old" ""
Q12.c.
> list1$b
[1] 4 4 4 4 4
> list2$list1$l
[1] "a" "b" "c" "d" "e"
> list2[[3]]
[1] 2 3
> list2[[3]]+4
[1] 6 7
> list2[3]+4
Error in list2[3] + 4: Non-numeric first operand

289

Q13.a.
> age.factor <- factor(cut(age,

+ breaks=c(0,30,60,90)),

+ levels=c(1,2,3),

+ label=c("Young","Middle Age","Old"))

> age.factor

[1] Young Old Young Middle Age Middle Age Young Old

[8] Old

Q13.a.
> attributes(age.factor)

$levels:

[1] "Young" "Middle Age" "Old"

$class:

[1] "factor"

290

Solutions:Statistical Models
Q1.a.
> swiss.df <- data.frame(swiss.fertility,swiss.x)
Q1.b.
> summary(swiss.df)
swiss.fertility Agriculture Examination Education Catholic

Min.:35.00 Min.: 1.20 Min.: 3.00 Min.: 1.00 Min.: 2.20
1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00 1st Qu.: 5.20
Median:70.40 Median:54.10 Median:16.00 Median: 8.00 Median: 15.10
Mean:70.14 Mean:50.66 Mean:16.49 Mean:10.98 Mean: 41.14

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00 3rd Qu.: 93.15
Max.:92.50 Max.:89.70 Max.:37.00 Max.:53.00 Max.:100.00

Infant.Mortality
Min.:10.80

1st Qu.:18.15
Median:20.00
Mean:19.94

3rd Qu.:21.70

Max.:26.60

291

Q1.c.
> cor(swiss.df)

swiss.fertility Agriculture Examination Education Catholic

swiss.fertility 1.0000000 0.35307918 -0.6458827 -0.66378886 0.4638833

Agriculture 0.3530792 1.00000000 -0.6865422 -0.63952252 0.4011097

Examination -0.6458827 -0.68654221 1.0000000 0.69841530 -0.5728530

Education -0.6637889 -0.63952252 0.6984153 1.00000000 -0.1540185

Catholic 0.4638833 0.40110968 -0.5728530 -0.15401847 1.0000000

Infant.Mortality 0.4165560 -0.06085861 -0.1140216 -0.09932185 0.1755114

Infant.Mortality

swiss.fertility 0.41655603

Agriculture -0.06085861

Examination -0.11402160

Education -0.09932185

Catholic 0.17551138

Infant.Mortality 1.00000000

292

Q1.d.
> pairs(swiss.df)

swiss.fertility

0 20 40 60 80 0 10 20 30 40 50 15 20 25

40
60

80

0
20

40
60

80

Agriculture

Examination

10
20

30

0
10

30
50

Education

Catholic

0
20

60
10

0

40 50 60 70 80 90

15
20

25

10 20 30 0 20 40 60 80 100

Infant.Mortality

293

Q1.e.
> fit1 <- lm(swiss.fertility~Education+Catholic)
> summary(fit1)
Call: lm(formula = swiss.fertility ~ Education + Catholic)
Residuals:

Min 1Q Median 3Q Max
-15.04 -6.576 -1.426 6.126 14.32

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 74.2319 2.3518 31.5636 0.0000
Education -0.7882 0.1293 -6.0968 0.0000
Catholic 0.1109 0.0298 3.7224 0.0006

Residual standard error: 8.331 on 44 degrees of freedom
Multiple R-Squared: 0.5746
F-statistic: 29.71 on 2 and 44 degrees of freedom, the p-value is 6.822e-009

Correlation of Coefficients:
(Intercept) Education

Education -0.6838

Catholic -0.6144 0.1540

294

> par(mfrow=c(2,3))

> plot(fit1)

Fitted : Education + Catholic

R
es

id
ua

ls

40 50 60 70 80

-1
5

-1
0

-5
0

5
10

15 5 1

47

fits

sq
rt

(a
bs

(R
es

id
ua

ls
))

40 50 60 70 80
1

2
3

4

5 147

Fitted : Education + Catholic

sw
is

s.
fe

rt
ili

ty

40 50 60 70 80

40
50

60
70

80
90

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
5

-1
0

-5
0

5
10

15 5 1

47

Fitted Values

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

Residuals

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

f-value

sw
is

s.
fe

rt
ili

ty

Index

C
oo

k’
s

D
is

ta
nc

e

0 10 20 30 40

0.
0

0.
05

0.
10

0.
15

46

42 47

295

> fit2 <- update(fit1,.~.-Catholic)
> summary(fit2)
Call: lm(formula = swiss.fertility ~ Education)
Residuals:

Min 1Q Median 3Q Max
-17.04 -6.711 -1.011 9.526 19.69

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 79.6101 2.1041 37.8357 0.0000
Education -0.8624 0.1448 -5.9536 0.0000

Residual standard error: 9.446 on 45 degrees of freedom
Multiple R-Squared: 0.4406
F-statistic: 35.45 on 1 and 45 degrees of freedom, the p-value is 3.659e-007

Correlation of Coefficients:
(Intercept)

Education -0.7558

296

> par(mfrow=c(2,3))

> plot(fit2)

Fitted : Education

R
es

id
ua

ls

40 50 60 70 80

-1
0

0
10

20

24

3
8

fits

sq
rt

(a
bs

(R
es

id
ua

ls
))

40 50 60 70 80

1
2

3
4 243
8

Fitted : Education

sw
is

s.
fe

rt
ili

ty

40 50 60 70 80

40
50

60
70

80
90

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
0

0
10

20

24

3
8

Fitted Values

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

20
Residuals

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

20

f-value

sw
is

s.
fe

rt
ili

ty

Index

C
oo

k’
s

D
is

ta
nc

e
0 10 20 30 40

0.
0

0.
04

0.
08

0.
12

46

47

42

297

> fit3 <- update(fit1,.~.-Education)
> summary(fit3)
Call: lm(formula = swiss.fertility ~ Catholic)
Residuals:

Min 1Q Median 3Q Max
-35.3 -4.056 0.5114 6.854 16.68

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 64.4266 2.3047 27.9549 0.0000
Catholic 0.1389 0.0395 3.5126 0.0010

Residual standard error: 11.19 on 45 degrees of freedom
Multiple R-Squared: 0.2152
F-statistic: 12.34 on 1 and 45 degrees of freedom, the p-value is 0.001023

Correlation of Coefficients:
(Intercept)

Catholic -0.7061

298

> par(mfrow=c(2,3))

> plot(fit3)

Fitted : Catholic

R
es

id
ua

ls

66 68 70 72 74 76 78

-3
0

-2
0

-1
0

0
10

46
47

45

fits
sq

rt
(a

bs
(R

es
id

ua
ls

))

66 68 70 72 74 76 78

0
1

2
3

4
5

6

46
47

45

Fitted : Catholic

sw
is

s.
fe

rt
ili

ty

66 68 70 72 74 76 78

40
50

60
70

80
90

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-3
0

-2
0

-1
0

0
10

46
47

45

Fitted Values

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

Residuals

0.0 0.4 0.8

-3
0

-2
0

-1
0

0
10

f-value

sw
is

s.
fe

rt
ili

ty

Index

C
oo

k’
s

D
is

ta
nc

e
0 10 20 30 40

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

46

47

45

299

Q1.h.
> anova(fit1,fit2)
Analysis of Variance Table

Response: swiss.fertility

Terms Resid. Df RSS Test Df Sum of Sq F Value
1 Education + Catholic 44 3053.627
2 Education 45 4015.236 -Catholic -1 -961.6083 13.8559

Pr(F)
1
2 0.0005575191
> anova(fit1,fit3)
Analysis of Variance Table

Response: swiss.fertility

Terms Resid. Df RSS Test Df Sum of Sq F Value
1 Education + Catholic 44 3053.627
2 Catholic 45 5633.347 -Education -1 -2579.72 37.17142

Pr(F)
1
2 2.431488e-007

Prefer the model that has the two.

300

Solution: Functions
Q1.
> myplot.fun <- function(x){
+ hist(x)
+ }
Q2.
> fix(myplot.fun)
function(x)
{

par(mfrow = c(1, 2))
hist(x)
boxplot(ozone)

}

301

Q3.

function(x = 0:100, type = "l")

{

if(any(x < 0)) {

warning("Negative values are not allowed")

}

else {

plot(x, sqrt(x), type = type)

}

}

302

Q4.

> fix(plot.any)

function(func,min.x,max.x,num.x=100,type="l",...)

{

x <- seq(min.x,max.x,length=100)

y <- func(x)

plot(x,y,type=type,...)

}

303

Q5.
> coef.var <- function(x){
+ cv <- sqrt(var(x))/mean(x)
+ cv
+ }
Q6.
> fix(coef.var)
function(x, na.rm = F)
{

if(na.rm) {
x <- x[!is.na(x)]

}
cv <- sqrt(var(x))/mean(x)
cv

}

304

Solution: Graphic

Q1. a.

> attach(ethanol)

> par(mfrow=c(1,3))

> hist(NOx)

> qqnorm(NOx)

> boxplot(NOx)
0 1 2 3 4

0
5

10
15

20

NOx Quantiles of Standard Normal

N
O

x

-2 -1 0 1 2

1
2

3
4

1
2

3
4

305

Q1.b.

> plot(NOx,E,pch="#")

> title("Plot of NOx vs E")

##

#

#

#

#
#
#

##
##

#

#
#

#
###

#

#

#

#
#

####

#

#

#

#

#

#

##

#

###

##

#

#

#

##

#

#

##

#

#

#

#
#

#

#

#
#

#

#

#

#
#

#
#

#

#
#
#

#

#
#

#

#

#

#
#

#
#

NOx

E

1 2 3 4

0.
6

0.
8

1.
0

1.
2

Plot of NOx vs E

306

Q2.
> x <- seq(-2*pi,2*pi,length=1000)
> plot(x,sin(x)+cos(x),type="l",xlab="x values",ylab="y values")
> lines(x,cos(x),lty=2,col=2)
> lines(x,sin(x),lty=3,col=3)
> title(main="Trigonometric function",
+ sub="sin(x), cos(x), sin(x)+cos(x)")
> legend(-6,-1,c("sin(x)+cos(x)","cos(x)","sin(x)"),lty=1:3,col=1:3)

x values

y
va

lu
es

-6 -4 -2 0 2 4 6

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Trigonometric function

sin(x), cos(x), sin(x)+cos(x)

sin(x)+cos(x)
cos(x)
sin(x)

307

15
20

25

M1 M2
15

20
25

T1 T2 T3

Q3.

> boxplot(split(gun$Rounds,gun$Method))

> boxplot(split(gun$Rounds,gun$Team))

308

Solution: Data Import & Export

Q1. In S-Plus do the following

> import.data("c:\\datasets\\Gpadata.sd2",

+ FileType="SAS",

+ NameRow="1",

+ DataFrame="gpadata")

309

• The result is

310

Q2. In SPLUS do the following:

> gpa <- read.table("c:\\datasets\\gpa.txt",

+ header=T,sep=",")

• The result is

311

Q3. In SPLUS do the following:

> export.data(DataSet="gas",

+ Delimiter=",",

+ ColumnNames=T,

+ Quotes=T,

+ FileType="ASCII",

+ FileName="c:\\datasets\\gas.txt")

Q4. In SPLUS do the following:

> export.data(DataSet="gas",

+ FileType="SAS",

+ FileName="c:\\datasets\\gas.sd2")

312

Q5. In SPLUS do the following:
>data.dump(c("gun","car.all"),"c:\\datasets\\datall.dmp")

Q6. In SPLUS do the following:

> sink("c:\\datasets\\galaxy.txt")

> galaxy

> sink()

Q7. Do it in class

